Una guida alla modularità di Java 9

1. Panoramica

Java 9 introduce un nuovo livello di astrazione sopra i pacchetti, formalmente noto come Java Platform Module System (JPMS), o in breve "Moduli".

In questo tutorial, esamineremo il nuovo sistema e ne discuteremo i vari aspetti.

Costruiremo anche un semplice progetto per dimostrare tutti i concetti che impareremo in questa guida.

2. Cos'è un modulo?

Prima di tutto, dobbiamo capire cos'è un modulo prima di poter capire come usarli.

Un modulo è un gruppo di pacchetti e risorse strettamente correlati insieme a un nuovo file descrittore del modulo.

In altre parole, è un'astrazione "pacchetto di pacchetti Java" che ci permette di rendere il nostro codice ancora più riutilizzabile.

2.1. Pacchi

I pacchetti all'interno di un modulo sono identici ai pacchetti Java che abbiamo utilizzato sin dall'inizio di Java.

Quando creiamo un modulo, organizziamo il codice internamente in pacchetti proprio come abbiamo fatto in precedenza con qualsiasi altro progetto.

Oltre a organizzare il nostro codice, i pacchetti vengono utilizzati per determinare quale codice è pubblicamente accessibile al di fuori del modulo. Passeremo più tempo a parlarne più avanti nell'articolo.

2.2. Risorse

Ogni modulo è responsabile delle proprie risorse, come i file multimediali o di configurazione.

In precedenza, mettevamo tutte le risorse nel livello principale del nostro progetto e gestivamo manualmente quali risorse appartenevano a parti diverse dell'applicazione.

Con i moduli, possiamo spedire immagini e file XML richiesti con il modulo che ne ha bisogno, rendendo i nostri progetti molto più facili da gestire.

2.3. Descrittore del modulo

Quando creiamo un modulo, includiamo un file descrittore che definisce diversi aspetti del nostro nuovo modulo:

  • Nome : il nome del nostro modulo
  • Dipendenze : un elenco di altri moduli da cui dipende questo modulo
  • Pacchetti pubblici : un elenco di tutti i pacchetti che vogliamo accessibili dall'esterno del modulo
  • Servizi offerti : possiamo fornire implementazioni di servizi che possono essere utilizzate da altri moduli
  • Servizi consumati : consente al modulo corrente di essere un consumatore di un servizio
  • Autorizzazioni di riflessione : consente esplicitamente ad altre classi di utilizzare la riflessione per accedere ai membri privati ​​di un pacchetto

Le regole di denominazione dei moduli sono simili a come denominiamo i pacchetti (i punti sono consentiti, i trattini no). È molto comune fare nomi in stile progetto (my.module) o Reverse-DNS ( com.baeldung.mymodule ). Useremo lo stile progetto in questa guida.

Dobbiamo elencare tutti i pacchetti che vogliamo che siano pubblici perché per impostazione predefinita tutti i pacchetti sono privati ​​del modulo.

Lo stesso vale per la riflessione. Per impostazione predefinita, non possiamo usare la riflessione sulle classi che importiamo da un altro modulo.

Più avanti nell'articolo, vedremo esempi di come utilizzare il file descrittore del modulo.

2.4. Tipi di modulo

Esistono quattro tipi di moduli nel nuovo sistema di moduli:

  • Moduli di sistema- Questi sono i moduli elencati quando eseguiamo il comando list-modules sopra. Includono i moduli Java SE e JDK.
  • Moduli dell'applicazione : questi moduli sono ciò che di solito vogliamo creare quando decidiamo di utilizzare i moduli. Sono denominati e definiti nel file module-info.class compilato incluso nel JAR assemblato.
  • Moduli automatici : possiamo includere moduli non ufficiali aggiungendo file JAR esistenti al percorso del modulo. Il nome del modulo sarà derivato dal nome del JAR. I moduli automatici avranno pieno accesso in lettura a ogni altro modulo caricato dal percorso.
  • Modulo senza nome : quando una classe o un JAR viene caricata nel percorso di classe, ma non nel percorso del modulo, viene automaticamente aggiunto al modulo senza nome. È un modulo generico per mantenere la compatibilità con le versioni precedenti del codice Java scritto in precedenza.

2.5. Distribuzione

I moduli possono essere distribuiti in due modi: come file JAR o come progetto compilato "esploso". Questo, ovviamente, è uguale a qualsiasi altro progetto Java, quindi non dovrebbe sorprendere.

Possiamo creare progetti multi-modulo composti da una “applicazione principale” e diversi moduli di libreria.

Dobbiamo stare attenti però perché possiamo avere solo un modulo per file JAR.

Quando impostiamo il nostro file di build, dobbiamo assicurarci di raggruppare ogni modulo nel nostro progetto come un jar separato.

3. Moduli predefiniti

Quando installiamo Java 9, possiamo vedere che JDK ora ha una nuova struttura.

Hanno preso tutti i pacchetti originali e li hanno spostati nel nuovo sistema di moduli.

Possiamo vedere cosa sono questi moduli digitando nella riga di comando:

java --list-modules

Questi moduli sono suddivisi in quattro gruppi principali: java, javafx, jdk e Oracle .

I moduli java sono le classi di implementazione per la specifica del linguaggio SE principale.

I moduli javafx sono le librerie dell'interfaccia utente FX.

Tutto ciò che serve al JDK stesso è conservato nei moduli jdk .

Infine, tutto ciò che è specifico di Oracle è nei moduli Oracle .

4. Dichiarazioni del modulo

Per configurare un modulo, dobbiamo mettere un file speciale alla radice dei nostri pacchetti chiamato module-info.java .

Questo file è noto come descrittore del modulo e contiene tutti i dati necessari per creare e utilizzare il nostro nuovo modulo.

Costruiamo il modulo con una dichiarazione il cui corpo è vuoto o composto da direttive del modulo:

module myModuleName { // all directives are optional }

We start the module declaration with the module keyword, and we follow that with the name of the module.

The module will work with this declaration, but we'll commonly need more information.

That is where the module directives come in.

4.1. Requires

Our first directive is requires. This module directive allows us to declare module dependencies:

module my.module { requires module.name; }

Now, my.module has both a runtime and a compile-time dependency on module.name.

And all public types exported from a dependency are accessible by our module when we use this directive.

4.2. Requires Static

Sometimes we write code that references another module, but that users of our library will never want to use.

For instance, we might write a utility function that pretty-prints our internal state when another logging module is present. But, not every consumer of our library will want this functionality, and they don't want to include an extra logging library.

In these cases, we want to use an optional dependency. By using the requires static directive, we create a compile-time-only dependency:

module my.module { requires static module.name; }

4.3. Requires Transitive

We commonly work with libraries to make our lives easier.

But, we need to make sure that any module that brings in our code will also bring in these extra ‘transitive' dependencies or they won't work.

Luckily, we can use the requires transitive directive to force any downstream consumers also to read our required dependencies:

module my.module { requires transitive module.name; }

Now, when a developer requires my.module, they won't also have also to say requires module.name for our module to still work.

4.4. Exports

By default, a module doesn't expose any of its API to other modules. This strong encapsulation was one of the key motivators for creating the module system in the first place.

Our code is significantly more secure, but now we need to explicitly open our API up to the world if we want it to be usable.

We use the exports directive to expose all public members of the named package:

module my.module { exports com.my.package.name; }

Now, when someone does requires my.module, they will have access to the public types in our com.my.package.name package, but not any other package.

4.5. Exports … To

We can use exports…to to open up our public classes to the world.

But, what if we don't want the entire world to access our API?

We can restrict which modules have access to our APIs using the exports…to directive.

Similar to the exports directive, we declare a package as exported. But, we also list which modules we are allowing to import this package as a requires. Let's see what this looks like:

module my.module { export com.my.package.name to com.specific.package; }

4.6. Uses

A service is an implementation of a specific interface or abstract class that can be consumed by other classes.

We designate the services our module consumes with the uses directive.

Note that the class name we use is either the interface or abstract class of the service, not the implementation class:

module my.module { uses class.name; }

We should note here that there's a difference between a requires directive and the uses directive.

We might require a module that provides a service we want to consume, but that service implements an interface from one of its transitive dependencies.

Instead of forcing our module to require all transitive dependencies just in case, we use the uses directive to add the required interface to the module path.

4.7. Provides … With

A module can also be a service provider that other modules can consume.

The first part of the directive is the provides keyword. Here is where we put the interface or abstract class name.

Next, we have the with directive where we provide the implementation class name that either implements the interface or extends the abstract class.

Here's what it looks like put together:

module my.module { provides MyInterface with MyInterfaceImpl; }

4.8. Open

We mentioned earlier that encapsulation was a driving motivator for the design of this module system.

Before Java 9, it was possible to use reflection to examine every type and member in a package, even the private ones. Nothing was truly encapsulated, which can open up all kinds of problems for developers of the libraries.

Because Java 9 enforces strong encapsulation, we now have to explicitly grant permission for other modules to reflect on our classes.

If we want to continue to allow full reflection as older versions of Java did, we can simply open the entire module up:

open module my.module { }

4.9. Opens

If we need to allow reflection of private types, but we don't want all of our code exposed, we can use the opens directive to expose specific packages.

But remember, this will open the package up to the entire world, so make sure that is what you want:

module my.module { opens com.my.package; }

4.10. Opens … To

Okay, so reflection is great sometimes, but we still want as much security as we can get from encapsulation. We can selectively open our packages to a pre-approved list of modules, in this case, using the opens…to directive:

module my.module { opens com.my.package to moduleOne, moduleTwo, etc.; }

5. Command Line Options

By now, support for Java 9 modules has been added to Maven and Gradle, so you won't need to do a lot of manual building of your projects. However, it's still valuable to know how to use the module system from the command line.

We'll be using the command line for our full example down below to help solidify how the entire system works in our minds.

  • module-pathWe use the –module-path option to specify the module path. This is a list of one or more directories that contain your modules.
  • add-reads – Instead of relying on the module declaration file, we can use the command line equivalent of the requires directive; –add-reads.
  • add-exportsCommand line replacement for the exports directive.
  • add-opensReplace the open clause in the module declaration file.
  • add-modulesAdds the list of modules into the default set of modules
  • list-modulesPrints a list of all modules and their version strings
  • patch-module – Add or override classes in a modules
  • illegal-access=permit|warn|deny – Either relax strong encapsulation by showing a single global warning, shows every warning, or fails with errors. The default is permit.

6. Visibility

We should spend a little time talking about the visibility of our code.

A lot of libraries depend on reflection to work their magic (JUnit and Spring come to mind).

By default in Java 9, we will only have access to public classes, methods, and fields in our exported packages. Even if we use reflection to get access to non-public members and call setAccessible(true), we won't be able to access these members.

We can use the open, opens, and opens…to options to grant runtime-only access for reflection. Note, this is runtime-only!

We won't be able to compile against private types, and we should never need to anyway.

If we must have access to a module for reflection, and we're not the owner of that module (i.e., we can't use the opens…to directive), then it's possible to use the command line –add-opens option to allow own modules reflection access to the locked down module at runtime.

The only caveat here's that you need to have access to the command line arguments that are used to run a module for this to work.

7. Putting It All Together

Now that we know what a module is and how to use them let's go ahead and build a simple project to demonstrate all the concepts we just learned.

To keep things simple, we won't be using Maven or Gradle. Instead, we'll rely on the command line tools to build our modules.

7.1. Setting Up Our Project

First, we need to set up our project structure. We'll create several directories to organize our files.

Start by creating the project folder:

mkdir module-project cd module-project

This is the base of our whole project, so add files in here such as Maven or Gradle build files, other source directories, and resources.

We also put a directory to hold all our project specific modules.

Next, we create a module directory:

mkdir simple-modules

Here's what our project structure will look like:

module-project |- // src if we use the default package |- // build files also go at this level |- simple-modules |- hello.modules |- com |- baeldung |- modules |- hello |- main.app |- com |- baeldung |- modules |- main

7.2. Our First Module

Now that we have the basic structure in place, let's add our first module.

Under the simple-modules directory, create a new directory called hello.modules.

We can name this anything we want but follow package naming rules (i.e., periods to separate words, etc.). We can even use the name of our main package as the module name if we want, but usually, we want to stick to the same name we would use to create a JAR of this module.

Under our new module, we can create the packages we want. In our case, we are going to create one package structure:

com.baeldung.modules.hello

Next, create a new class called HelloModules.java in this package. We will keep the code simple:

package com.baeldung.modules.hello; public class HelloModules { public static void doSomething() { System.out.println("Hello, Modules!"); } }

And finally, in the hello.modules root directory, add in our module descriptor; module-info.java:

module hello.modules { exports com.baeldung.modules.hello; }

To keep this example simple, all we are doing is exporting all public members of the com.baeldung.modules.hello package.

7.3. Our Second Module

Our first module is great, but it doesn't do anything.

We can create a second module that uses it now.

Under our simple-modules directory, create another module directory called main.app. We are going to start with the module descriptor this time:

module main.app { requires hello.modules; }

We don't need to expose anything to the outside world. Instead, all we need to do is depend on our first module, so we have access to the public classes it exports.

Now we can create an application that uses it.

Create a new package structure: com.baeldung.modules.main.

Now, create a new class file called MainApp.java.

package com.baeldung.modules.main; import com.baeldung.modules.hello.HelloModules; public class MainApp { public static void main(String[] args) { HelloModules.doSomething(); } }

And that is all the code we need to demonstrate modules. Our next step is to build and run this code from the command line.

7.4. Building Our Modules

To build our project, we can create a simple bash script and place it at the root of our project.

Create a file called compile-simple-modules.sh:

#!/usr/bin/env bash javac -d outDir --module-source-path simple-modules $(find simple-modules -name "*.java")

There are two parts to this command, the javac and find commands.

The find command is simply outputting a list of all .java files under our simple-modules directory. We can then feed that list directly into the Java compiler.

The only thing we have to do differently than the older versions of Java is to provide a module-source-path parameter to inform the compiler that it's building modules.

Once we run this command, we will have an outDir folder with two compiled modules inside.

7.5. Running Our Code

And now we can finally run our code to verify modules are working correctly.

Create another file in the root of the project: run-simple-module-app.sh.

#!/usr/bin/env bash java --module-path outDir -m main.app/com.baeldung.modules.main.MainApp

To run a module, we must provide at least the module-path and the main class. If all works, you should see:

>$ ./run-simple-module-app.sh Hello, Modules!

7.6. Adding a Service

Now that we have a basic understanding of how to build a module, let's make it a little more complicated.

We're going to see how to use the provides…with and uses directives.

Start by defining a new file in the hello.modules module named HelloInterface.java:

public interface HelloInterface { void sayHello(); }

To make things easy, we're going to implement this interface with our existing HelloModules.java class:

public class HelloModules implements HelloInterface { public static void doSomething() { System.out.println("Hello, Modules!"); } public void sayHello() { System.out.println("Hello!"); } }

That is all we need to do to create a service.

Now, we need to tell the world that our module provides this service.

Add the following to our module-info.java:

provides com.baeldung.modules.hello.HelloInterface with com.baeldung.modules.hello.HelloModules;

As we can see, we declare the interface and which class implements it.

Next, we need to consume this service. In our main.app module, let's add the following to our module-info.java:

uses com.baeldung.modules.hello.HelloInterface;

Finally, in our main method we can use this service via a ServiceLoader:

Iterable services = ServiceLoader.load(HelloInterface.class); HelloInterface service = services.iterator().next(); service.sayHello();

Compile and run:

#> ./run-simple-module-app.sh Hello, Modules! Hello!

We use these directives to be much more explicit about how our code is to be used.

We could put the implementation into a private package while exposing the interface in a public package.

This makes our code much more secure with very little extra overhead.

Go ahead and try out some of the other directives to learn more about modules and how they work.

8. Adding Modules to the Unnamed Module

The unnamed module concept is similar to the default package. Therefore, it's not considered a real module, but can be viewed as the default module.

If a class is not a member of a named module, then it will be automatically considered as part of this unnamed module.

Sometimes, to ensure specific platform, library, or service-provider modules in the module graph, we need to add modules to the default root set. For example, when we try to run Java 8 programs as-is with Java 9 compiler we may need to add modules.

In general, the option to add the named modules to the default set of root modules is –add-modules (,)* where is a module name.

For example, to provide access to all java.xml.bind modules the syntax would be:

--add-modules java.xml.bind

To use this in Maven, we can embed the same to the maven-compiler-plugin:

 org.apache.maven.plugins maven-compiler-plugin 3.8.0  9 9  --add-modules java.xml.bind   

9. Conclusion

In questa guida esauriente, ci siamo concentrati e trattati le basi del nuovo sistema Java 9 Module.

Abbiamo iniziato parlando di cosa sia un modulo.

Successivamente, abbiamo parlato di come scoprire quali moduli sono inclusi nel JDK.

Abbiamo anche trattato in dettaglio il file di dichiarazione del modulo.

Abbiamo completato la teoria parlando dei vari argomenti della riga di comando di cui avremo bisogno per costruire i nostri moduli.

Infine, abbiamo messo in pratica tutte le nostre conoscenze precedenti e creato una semplice applicazione basata sul sistema del modulo.

Per vedere questo codice e altro, assicurati di controllarlo su Github.